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Plasmonic nanoparticles are amongst the most effective ways to resonantly couple
optical energy into and out of nanometer sized volumes. However, controlling and/or
tuning the transfer of this incident energy to the surrounding near and far field is one of
the most interesting challenges in this area. Due to the dielectric properties of metallic
silver (Ag), its nanoparticles have amongst the highest radiative quantum efficiencies
(η), i.e., the ability to radiatively transfer the incident energy to the surrounding. Here
we report the discovery that bimetallic nanoparticles of Ag made with immiscible
and plasmonically weak Co metal can show comparable and/or even higher η values.
The enhancement is a result of the narrowing of the plasmon bandwidth from these
bimetal systems. The phenomenological explanation of this effect based on the dipolar
approximation points to the reduction in radiative losses within the Ag nanoparticles
when in contact with cobalt. This is also supported by a model of coupling between
poor and good conductors based on the surface to volume ratio. This study presents
a new type of bandwidth engineering, one based on using bimetal nanostructures, to
tune and/or enhance the quality factor and quantum efficiency for near and far-field
plasmonic applications. C 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4954698]

I. INTRODUCTION

One of the most interesting properties demonstrated by metal nanoparticles is their strong reso-
nant response to electromagnetic (EM) fields. In general, when photons strike a metal nanoparticle,
whose size is comparable to or smaller than the wavelength of light, it can induce collective coherent
oscillations of the electrons of the metal. For nanoparticles, these oscillations occur at specific fre-
quency known as the plasmon frequency or the localized surface plasmon resonance (LSPR) fre-
quency.1 The primary outcome of this interaction can be broadly categorized as being twofold. On
one hand, a very efficient scattering of photons takes place, thus making plasmonic nanoparticles very
important for applications pertaining to photon redirection and/or transfer, such as in wave guiding,
for light trapping inside thin film solar cells, and in optical computing requiring the efficient bending of
light in small volumes.2–6 On the other hand, plasmonic resonances are also associated with enhanced

aElectronic address: ramki@utk.edu

2378-0967/2016/1(7)/076101/14 1, 076101-1 ©Author(s) 2016.
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photon absorption within the nanoparticle. The subsequent conversion of this absorbed energy for
the generation of charge carriers and/or phonons has been considered in applications such as pho-
tocatalysis, photothermal imaging, plasmonic heating, and heat-assisted magnetic recording.4,7–9 In
this context, one of the exciting challenges in the field of plasmonic nanostructures is understanding
how to tune and/or control the plasmonic interaction process such that the material can be optimized
to show either enhanced radiative effects or enhanced absorptive (non-radiative) effects.

The properties of the resonant plasmon interaction, such as the location of the plasmon frequency
and the intensity of the resonance, such as determined by the plasmon bandwidth, depend intrinsically
on the metal-type, and extrinsically on such factors as the shape, size, and nature of the surrounding
medium.4,10–12 Therefore, it is natural to expect that optimizing the radiative versus non-radiative
effects will also depend on these parameters. Indeed, as was first demonstrated by Sonnichsen et al.,
it is possible to tune the plasmonic bandwidth by changing the shape of the nanoparticle such that
the dominant process changes from non-radiative loss inside the nanoparticle to radiative damping.10

However, controlling the shape is not always straightforward and so other means are being sought
to tune plasmonic properties. Recently, there has been substantial interest in using multimetallic
nanoparticles, either in the form of alloys or other segregated structures, such as core-shell, layered
discs, and Janus faced particles, to better tune these plasmonic properties.13–19 It has been seen that on
combining two different metals new phenomenon and/or improved properties can be observed. For
example, in core-shell nanoparticles of Au-Ag, the plasmon resonance energy of the Au core could be
decreased from 500 to 400 nm by increasing the Ag shell thickness.13 By synthesizing bimetals that
combine metals with large intrinsic magneto-optical (MO) activity, such as ferromagnets, with metals
with large intrinsic plasmonic resonances, such as the noble metals, the MO activity of the bimetal
can be significantly enhanced. For instance, core-shell nanoparticles of Co-Ag show much higher
Faraday rotation than pure Co when measured at the plasmon resonance frequency of the bimetal
nanoparticle.14 Plasmonic nanosandwiches consisting of Au/Co/Au system have also demonstrated
enhanced MO activity at the LSPR of the nanosandwich.15 The MO activity and the LSPR of the
nanosandwich can be further tuned by controlling the thickness of the individual metal layers or the
diameter of the nanosandwich.15,20 However, to our knowledge, alloying and/or physical contact of
two different metals has not been shown to lead to localized surface plasmon resonances that are
sharper than those present in the better plasmonic metal making up the constituent. In other words,
multimetallic nanostructures are generally more suitable for applications in which the non-radiative
energy loss channel is preferable.

Here we present an experimental study comparing the plasmonic properties of ensembles of Ag
nanoparticles to those of CoAg bimetallic nanoparticles. These studies demonstrated that the bimetal
CoAg nanoparticles can show a lowering of the bandwidth over that of the most superior plasmonic
metal, Ag under certain volume and energy conditions. As a result, the bimetal showed comparable
or better quality factor and quantum efficiencies, i.e., the radiative scattering process, with respect to
pure Ag.

II. RESULTS

A. Optical spectroscopy of Ag nanoparticles

We begin with detailing the plasmonic properties of Ag nanoparticle (NP) arrays prepared by
pulsed laser dewetting on transparent glass substrates. Fig. 1(a) is a representative scanning electron
microscopy (SEM) image of freshly prepared array of Ag NPs synthesized by pulsed laser dewetting
of ∼1.5 nm thick Ag film. The inset of the image shows the size histogram of the particle size, which
conveyed a monomodal distribution with an average particle diameter of 36 ± 11 nm. Such particles
have been well documented to have a nearly hemispherical shape,21–26 and therefore, the average
particle diameter could be translated into an average particle volume for the array. By performing laser
dewetting with Ag films of varying initial film thickness, we created a number of arrays containing
particles whose average diameter (D) varied from∼25 to 120 nm, corresponding to an average particle
volume (πD3/12) ranging between ∼4 × 103 and 5 × 105 nm3.
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FIG. 1. (a) SEM image of pure Ag NP array of size 36±11 nm with the particle size distribution histogram is in the inset. (b)
The normalized absorption spectrum of different sized hemispherical NPs plotted as a function of energy. (c) The plasmon
resonance energy and the bandwidth are plotted as a function of Ag NP size. The black hollow circles and the solid red
squares denote plasmon resonance energy and the bandwidth, respectively. The black dotted and the dashed red lines are the
best fits for the experimental data.

Fig. 1(b) shows the normalized broadband absorption spectrum vs photon energy for the Ag NP
arrays as a function of average diameter. The maxima in the absorption spectra corresponds to the
position of the localized surface plasmon resonance (LSPR) or plasmon resonance energy (Eres) for
the nanoparticle array. It can be seen from Fig. 1(b) that as the average NP diameter increased the
plasmon resonance energy decreased (i.e., plasmon red shifted). Another feature that was evident
was the broadening in the absorption spectrum, i.e., the bandwidth of the peak increased. Both these
features are consistent with the size-dependent behavior of nanoparticles.1 From the optical spectra in
Fig. 1(b), it was possible to generate the trend in plasmon resonance energy and the energy bandwidth
(Γ) as a function of particle volume, and this is shown in Fig. 1(c). In Fig. 1(c) the left y-axis corre-
sponds to the plasmon resonance energy shown by the black hollow circles and the right y-axis is for
the energy bandwidth shown by solid red squares. Guides to the eye are shown by the black dotted and
red dashed lines, respectively. The energy bandwidth was obtained from the absorption spectra by
fitting a single Lorentzian peak at the resonance energy as shown in the supplementary material. It is
worth mentioning that since this bandwidth is from a nanoparticle array with a finite size distribution,
it will also intrinsically include contributions from in-homogeneous broadening that arise due to the
different size-dependent contributions to broadening. In-homogeneous broadening can be quantified
by a Gaussian correction to the Lorentzian line shape of the plasmonic signal. However, as we show
in the supplementary material, when the spectra were fitted to a single Lorentz shape, an excellent fit,
with regression values of R2 > 0.90 was consistently obtained and we concluded that the Gaussian
contribution was much less than the uncertainty of fitting. Therefore, the bandwidth values presented
throughout this manuscript were based on a single Lorentz peak fit of the absorbance spectra. From
Fig. 1(c) it was clear that the energy bandwidth increased with increasing volume (diameter) of the
Ag NPs.

B. Bimetallic CoAg nanostructures

Next, we performed a similar optical study of bimetallic CoAg nanoparticles with varying diam-
eter and composition by dewetting of bilayer films by a process described previously.22,27 In brief,
laser melting of bilayer films consisting of a bottom Ag film with thickness fixed at 5 nm and a top
Co film with thickness varied from 1 to 5 nm was performed on glass substrates. From this, different
compositions and volumes of CoAg bimetal NPs were obtained. A representative SEM of a CoAg NP
array synthesized by laser dewetting of a bilayer consisting of 2 nm thick Co on 5 nm thick Ag layer
is shown in Fig. 2(a). Shown in the inset is the size histogram again conveying the monomodal size
distribution of particles with average size of 113 ± 30 nm. The shapes of these Ag-Co nanoparticles
have also been previously confirmed to be near hemispherical.22–24 In addition, these works have
confirmed that in this metallurgically immiscible system, the Ag and Co occupy distinct segregated
regions within the nanoparticle. The normalized absorption spectra of various CoAg arrays are shown
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FIG. 2. (a) Representative SEM image of Co-Ag NP system. The SEM corresponds to Co (2 nm)/Ag (5 nm) with the average
NP size of 113±30 nm. The inset shows the size distribution histogram. (b) Corresponds to the normalized absorption
spectrums of Co-Ag bimetallic system. The Ag film thickness is fixed at 5 nm and the Co thickness is varied from 1-5 nm.
(c) Plots the plasmon energy as a function of NP size for the Co-Ag systems.

in Fig. 2(b). Fig. 2(c) compares the plasmon resonance energy and the bandwidth of the bimetallic
systems as a function of the total volume of the NP, again estimated from the average particle diameter.
It was seen that on increasing the NP volume, the plasmon red shifted, consistent with previous reports
on such bimetallic systems.22,28 The bandwidth also increased on increasing the NP volume. These
general trends appeared similar to those found for pure Ag nanoparticles presented in Fig. 1(c), i.e., the
bandwidth increased with increasing particle volume. However, some very unexpected attributes were
observed for the bimetal nanoparticles upon comparing to pure Ag, as we discuss in Subsection II C.

C. Quality factor of hemispherical Ag versus CoAg

The quality factor of a plasmon resonance is one of the most important characteristics in deter-
mining the usefulness of a material for plasmonic sensing applications. The quality factor can be
calculated experimentally through the function Q = Eres

Γ
, where Eres corresponds to the resonance

energy and Γ is the energy bandwidth. As detailed in Ref. 29, the quality factor is a measure of how
effectively the nanoparticle interacts with light, and only a few metals (Ag, Au, etc.) show strong
interactions (resonances) because of their high Q. One of the direct impacts of the quality factor is the
ability of nanoparticles to sense changes in their local environment, which is the basis for the technique
of localized surface plasmon resonance sensing or LSPR sensing. It is well known that particle with
higher quality factor show higher sensitivity to detection.30 A second characteristic highly relevant
to many plasmonic applications is the ability of the plasmonic nanoparticle to efficiently couple with
light and subsequently transfer photons into the surrounding environment, as would be needed in
imaging or solar energy harvesting. This ability is measured by the quantum efficiency η, which is
defined as η = Γ1R

Γ1R+Γ1NR
, where the various quantities are the radiative energy bandwidth (Γ1R) and

the non-radiative energy bandwidth (Γ1NR). Despite a large number of investigations of the plasmonic
quality factor of nanoparticles as a function of material, shape, and size, there is very little known
about the quality and quantum efficiency of hemispherical shaped particles of Ag or bimetallic Ag.

Here we compared these characteristics of the two systems, as shown in Fig. 3, where the exper-
imentally calculated quality factor using the results from Figs. 1(c) and 2(c) are shown for the Ag and
CoAg nanoparticles, respectively. In Fig. 3(a), the Q is shown as a function of the effective Ag volume
within the nanoparticle. For the case of Ag, this corresponds directly to the Ag NP volume, while, for
the case of CoAg, this Ag volume was estimated based on the thickness ratio of the bimetal films from
which it was created. As has been shown previously by elemental characterization studies, the average
metallic content within the CoAg bimetal particles is identical to the ratio of the starting bilayer film
thickness.22 From the trend in the experimental data shown in Fig. 3(a), it was evident that the Q values
of the bimetal could become comparable to or better than Ag for average volumes .2 × 105 nm3

(corresponding to a hemispherical particle of diameter .90 nm). This is an especially interesting
result given that mixing of metals generally leads to a degradation in the plasmonic property when
measured with respect to the pure plasmonic metal.29 In Fig. 3(b) the Q is shown as a function of
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FIG. 3. Quality factor for Ag versus CoAg in air. (a) Dependence of Q on the effective volume of Ag within the nanoparticle.
(b) Dependence of Q on the total volume of nanoparticle. (c) Dependence of Q on resonance (LSPR) energy.

the total volume of the particle, i.e., volume of pure Ag and the CoAg. Once again, from the trends
in the experimental data (symbols), it was clearly evident that for total volumes .2.5 × 105 nm3, the
CoAg has comparable or better Q than an equivalent volume of Ag. This interesting behavior was
also clearly evident when the Q was plotted as a function of the resonance energy, Fig. 3(c), where,
for Eres & 2.5 eV, the bimetal had comparable or better quality plasmons than pure Ag.

III. DISCUSSION

We first attempted to interpret the results by the use of an effective medium approach (EMA)
in which the bimetallic nanoparticle can be treated as being made from a metal with an effective
dielectric function that is related to the volume fraction of the two metals, in this case Ag and Co.
The effective dielectric of the bimetal NP, ϵe f f ,NP, was calculated using the mixing model suggested
in References 26, 28, and 31

ϵe f f ,NP =

(
f
ϵ1
+
(1 − f )

ϵ2
− 2 f (1 − f ) (ϵ1 − ϵ2)2

3ϵ1ϵ2 (ϵ2γ + ϵ1 (1 − γ))
)−1

, (1)

where ϵ1 and ϵ2 correspond to the complex dielectric of the constituent metals, f is the volume fraction
of the metals in a single nanoparticle, and γ is a NP shape parameter. Following this, the effective
dielectric of the nanoparticles on a substrate was calculated using an EMA specifically developed to
capture the size-dependent plasmonic behavior of particles in the Mie limit, i.e., where particles with
large size can also be evaluated.32 The optical density of the CoAg NPs was calculated by considering
them embedded in a dielectric slab of n = 1.3. The total complex effective dielectric of the dielec-
tric slab with embedded nanoparticles was calculated as described in Ref. 32. The effective complex
dielectric of the slab was calculated using the following relation:

ϵ total = ϵh −
3 f ′ϵh
2q3 Im {l=1i (2l + 1) (eal +

mbl)}
1 + f ′

2q3 Im {l=1i (2l + 1) (eal + mbl)}
, (2)

where ϵh is the dielectric of the host medium, and f ′ is the volume fraction of NPs in the slab. a and
b correspond to the Mie coefficients given in terms of Ricaty-Bessel cylindrical functions, e and m
are the electric and magnetic multipoles, l corresponds to the pole contributions, and q = πDn

λ
is a

size parameter.
In Fig. 4 we show the quality factor predicted from this Mie model for spherically shaped bimetals

of CoAg. In Fig. 4(a) the total particle volume was fixed, whereas in the inset figure, the volume of
Ag was fixed while the volume of Co was varied. It was evident that in all cases, the addition of Co
decreased the Q-factor over that of pure Ag. This behavior can be understood from the nature of the
imaginary components of the dielectric functions of Ag and Co, which is shown in Fig. 4(b). It is
evident that in the energy range investigated in this work, the imaginary component of Co is signifi-
cantly larger than that of Ag and therefore an effective medium approach will predict a lower Q factor
than the pure Ag metal. In fact, for any combination of metals, the Q factor calculated using EMA will
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(a) (b)

FIG. 4. (a) The quality factor for CoAg bimetal spheres calculated using Mie theory with an effective medium approach to
calculate the dielectric function. The quality factor of the CoAg bimetal is plotted as a function of total nanoparticle volume
and in the inset the quality factor is plotted as a function of Ag volume in the nanoparticle. (b) Imaginary component of the
dielectric function ε′′ of Ag (solid line) and Co (dashed line) as a function of energy.

always be lower than the value of the better plasmonic metal. This result hinted to a fundamentally
different behavior being shown in this nanostructured system.

Next, we interpreted the change in bandwidth for plasmonic absorption based on the two-level
model, analogous to molecular spectroscopy, in which the plasmon decays by dephasing of the
coherent oscillations at a total rate given by33

Γ2 =
~

T2
=
~

2T1
+
~

T∗2
, (3)

where c is the speed of light, ~ is Planck’s constant, T1 is the electron relaxation time due to inelastic
processes such as radiative loss and non-radiative absorption, and T∗2 is the dephasing due to elastic
scattering processes such as electron collision with other electrons, defects, and/or surfaces. Since
the inelastic process has contributions primarily from radiative loss, i.e., emission of photons, and
non-radiative damping, such as due to intra- and inter-band transitions of electrons,34 so the total
dephasing energy bandwidth can be expressed as

Γ2 =
1
2
Γ1,R +

1
2
Γ1,NR + Γ∗2, (4)

where the subscripts R and N R refer to radiative and non-radiative components, respectively. To
interpret our experimental data we simplified this function based on certain approximations valid in
the particle size range of our investigations (i.e., 20–200 nm) as discussed next.

1. Dephasing by electron scattering: The broadening of the plasmon peak due to elastic scatter-
ing is a result of many events happening locally such as electron-electron, electron-phonon,
electron-defect, and electron-surface scattering processes.35,36 The damping constant (inverse
of the electron relaxation times) of these events follows Mathiessen’s rule where the scatter-
ing rates can be added because they are statistically independent channels. In bulk materials,
electron-phonon scattering dominates, but as the size of the NP is decreased other events start
to dominate. For a NP whose size is comparable to the mean free path of electrons, electron-
surface scattering is a dominant effect and in the simplest model the size-dependent elastic
dephasing energy rate is given by

~

T∗2
=
~

To
2
+ A

2~vF
D

, (5)

where 1
T 0

2
is the bulk damping constant, A includes details of the scattering process, vF is the

Fermi velocity, and D is the diameter of the NP. Since the damping rate is inversely propor-
tional to the diameter of the NP, the effect of surface scattering decreases as the size of the NP
increases. It is generally believed that the effect is dominant primarily for noble metal (Ag, Au)
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NPs with diameter less than ∼40 nm.36 As the NP size increases, the percentage contribution
of size to dephasing rate decreases very rapidly (the dephasing rate drops by a factor of 10
on increasing the NP size from 10 nm to 100 nm). Since our work involved Ag nanoparticles
with size range between ∼20 to 200 nm in diameter, we could safely assume that surface scat-
tering was negligible in the overall contribution to the size dependent bandwidth or quality
factor changes observed experimentally [for example, in Fig. 1(c)]. A second approximation
that could be used was related to the quantitative value of the bulk elastic dephasing energy for
Ag metal, which is ∼0.02 eV.34 When this value was compared to the measured values of the
bandwidth [for example, in Fig. 1(c)], it was clear that the bulk elastic dephasing is a negligible
component of the total dephasing rate and so could be neglected in all our subsequent analysis.
Based on this first simplification, the bandwidth could now be written as

Γ2 =
1
2
Γ1,R +

1
2
Γ1,NR. (6)

2. Dipolar approximation: It has been shown by Wokaun and co-workers37 that in the dipolar
approximation, the radiative loss of nanoparticles at a fixed resonance energy is directly related
to the volume of the particle V as Γ1R(Eres,V ) = KV , where K is a volume independent pro-
portionality term. K is a material specific parameter of the individual metal and is independent
of shape, size, and the ambient dielectric. In the dipolar approximation, assumed to be valid
in the size range where V

λ3 ≪ 1, where λ is the incident wavelength, the polarizability of the
nanostructure is dominated by the dipolar components, as opposed to higher order multipoles.
The experimental conditions of our work clearly permitted us to apply this approximation as
all possible combinations of particle volume and resonance energy range investigated here had
V
λ3 ≤ 10−2. This approximation was also used by Sonnichsen et al. to successfully interpret the
radiative and non-radiative loss as a function of shape in mono-metallic Au nanostructures.10

Likewise, in our work, for a fixed resonance energy, the two-level model could be used to
establish an independent value of the non-radiative component for any given experimentally
measured total bandwidth ΓExpt

2 as

1
2
Γ

Eres
1,NR = Γ

Expt
2 (Eres,V ) + 1

2
Γ
Eres
1,R (V ), (7)

provided that the radiative component ΓEres
1,R could be established for all desired combinations

of resonance energy and volume.

A. Estimation of radiative dephasing rate

Based on Eq. (7), the experimentally measured bandwidth can be utilized to extract the radiative
and non-radiative components, provided independent measurements of the total bandwidth can be
made with a fixed volume and varying plasmon energy or vice-versa. Here we have performed this
decoupling of the two contributions by varying the energy of the plasmon resonance through change
in the volume of the Ag nanoparticle. This was done by preparing triangular shaped truncated pyra-
mid nanoparticles of Ag using the nanosphere lithography (NSL) process, which has been described
earlier.38 In Fig. 5(a) a representative SEM image for the nanotriangles synthesized using a closed
packed array of 200 nm diameter polystyrene (PS) beads as a shadow mask is shown. Fig. 5(b) shows
the absorption spectrum for different volumes of the Ag nanotriangles, achieved by changing the base
of the triangle and keeping the height of the triangle fixed at 25 nm. This was achieved by forming the
triangles with NSL using PS beads of size 100, 200, and 500 nm diameter. The plasmon resonance
energy decreased on increasing the volume of the triangle. This behavior is consistent with the obser-
vations that upon increasing the aspect ratio of a nanostructure, the plasmon resonance energy red
shifts.39 The height and the base of the nanotriangles were varied to generate the plasmon resonance
energy of the triangles in the 2–3 eV range, shown in Fig. 5(c) as red solid triangles.

Next, we compared the bandwidth of the Ag triangles with the Ag nanoparticles as a function of
the resonance energy for values measured in air ambient, as shown in Fig. 5(c). It was observed that
as the plasmon resonance energy increased, the bandwidth for the hemisphere decreased while for the
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FIG. 5. (a) SEM image of the Ag nanotriangle array synthesized by NSL using a template of 200 nm PS beads with the
height of the triangles equal to 25 nm. (b) Normalized absorption spectrums of Ag nanotriangles of height 25 nm formed by
PS bead templates of 100, 200, and 500 nm. As the size of the PS bead is increased, the Ag plasmon shifts toward lower
energy (red shifts). (c) Comparison of the BW of hemispherical Ag NPs with Ag nanotriangles plotted against the plasmon
energy. The inset plots the K values calculated at the different plasmon resonance energies. The dotted line represents the
average K value for the data set plotted and the dashed line represents the best fit. The x-axis of the inset is in eV.

nanotriangles, it increased. More importantly, from the data in Fig. 5(c) it was possible to extract the
direct contribution of the radiative energy to the bandwidth as follows. As mentioned previously, in the
dipolar approximation, the difference in bandwidth for a given energy can only come from a difference
in volume and this can be used to explicitly calculate the radiative component via∆Γ1,R(ERes) = K∆V .
From Fig. 5(c), we estimated the bandwidth difference arising from the volume difference between
the hemisphere and triangle for various values of the resonance energy. The magnitude of the calcu-
lated K values at different resonance energies is shown by the open symbols in the inset of Fig. 5(c).
Within the experimental uncertainty of the volume estimates, from which the error bars shown in
Fig. 5(c)(inset) were generated, no significant variation in K with Eres was observable over this energy
range and an average K value of 8.1 ± 2.3 × 10−7 eV/nm3 was obtained. From this average K , it is
now possible to explicitly estimate the radiative and non-radiative contributions for the various Ag
nanoparticles, and this is shown in Fig. 6(a) as a function of the resonance energy and in Fig. 6(b) as
a function of the particle volume.

B. Ag vs CoAg: Radiative and non-radiative contributions

Having established the values of the radiative and non-radiative contributions to the plasmon
bandwidth in pure Ag, we can now interpret the behavior of CoAg. As has been detailed previously, the
CoAg bimetal consists of distinctly segregated regions of Ag and Co, due to their immiscibility.22–25

In other words, the Ag region is identical to pure Ag in its composition. On this basis, one would
expect that, for the Ag region, the intrinsic loss effects such as bulk elastic dephasing rate and the
non-radiative contribution to the dephasing should be identical to that of pure Ag. Overall, since the
total bandwidth is an additive sum of the various contributions, we considered that the overall response
of a Co+Ag nanoparticle should be the sum of various contributions as

Γ
Ag+Co
2 = 2−1(ΓAg

1,R + Γ
Co
1,R) + 2−1(ΓAg

1,NR
+ ΓCo

1,NR) + ΓAg∗
2 + ΓCo∗

2 . (8)

We mentioned previously that the non-radiative contribution from Co must be significantly larger
than that of Ag, and hence irrespective of the other contributions from Co, the overall bandwidth for
the CoAg nanoparticles should be larger than the pure Ag case. Therefore, the quality factor of the
CoAg must be lower for given energy and volume in comparison to that of the pure Ag. However, as
we saw from Fig. 3, the quality factor for the CoAg system can be comparable to or even be larger
than pure Ag for energies from 2.3 to 2.7 eV [Fig. 3(c)] or volumes from 1 to 2 × 105 nm3 [Fig. 3(b)].
Clearly, this is not consistent with the predictions from Eq. (8). We could also neglect the role of
near-field coupling (typically observed when the spacing between particles is within a few nanometers
or <<D) on influencing the bandwidth behaviors,12 since in our case, the average spacing between
the NPs in the arrays was ≥D.
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(a) (b)

(c) (d)

FIG. 6. Radiative and non-radiative contributions to the total bandwidth of Ag NPs. (a) Energy dependence of the bandwidth
contributions. (b) Volume dependence of the bandwidth contributions (note log scale on x-axis). Radiative and non-radiative
contributions to the total bandwidth of bimetallic NPs. (c) Energy dependence of bandwidth contributions for CoAg. (d)
Volume dependence of the bandwidth contributions for CoAg (note log scale on x-axis).

We propose that one way to understand the unusual behavior of the CoAg system is that the Co
nanoparticle in contact with Ag modifies the radiative bandwidth of the Ag plasmonic nanoparticle.
While such effects are known to occur in coupled pairs of molecules and nanoparticles with well
defined absorption levels,40,41 there is no prior evidence that it can occur in two contacted metallic
nanoparticles with significantly different plasmonic character i.e., one is strongly plasmonic (Ag)
while the other is not (Co). However, recently, we reported electron energy loss investigations in a
transmission electron microscope that showed evidence for unusually strong coupling between the
two metals that resulted in a strong plasmonic signature within the Co side of the bimetal nanos-
tructure.24 Here, to estimate the contribution of the radiative component, we assumed that the CoAg
behaves like a Ag nanoparticle and calculated the modified radiative BW by assuming the entire CoAg
NP to be a pure Ag NP. After calculating the radiative BW, the non-radiative BW component was
calculated as ΓCoAg

1,NR
= ΓCoAg − ΓAg

1,R. The result of this analysis is shown in Figs. 6(c) and 6(d) for the
CoAg. From this analysis the non-radiative loss was found to be larger than the radiative contribution
for energies &2.2 eV and volumes ≤5.4 × 105 nm3.

To explain the radiative BW modification of Ag in contact with Co, we utilized the analytical
model presented by Tsakmakidis et al.42 This model describes the interaction of two nonbianisotropic
systems placed adjacent to each other within the interaction regime consisting of poor and good
conductors. The metamaterial system is depicted and explained using an equivalent R-L-C electrical
circuit as described in Fig. 3 of Ref. 42. Here, Co and Ag are considered as the equivalents of poor and
good conductors, respectively. To explain our results, we have followed the approach presented by
Tsakmakidis et al., with a slight modification. In our case, the amount of Ag is fixed, but the amount
of Co is varied. To accommodate the change in the Co amount, we assumed the dependence of surface
to volume ratio in the various parameters used in the model rather than in the surface area. We then
calculated the active power, P = P1 + P2, which is the summation of the individual active powers of
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Co and Ag. The active power was calculated as

Pl = Re
�
Vl I⋆l

	
, (9)

where, l = 1,2 and V is the voltage and I is the current which are defined as

Vl = −iωµ0SlH0, (10)

Il =
det (Gl)
det (G) , (11)

where ω is the frequency, µ0 is the permeability, S is the surface to volume ratio, and H0 is the
amplitude of the magnetic component of the electromagnetic wave. Gl and G are defined as

G1 =



V1 i/ωC
V2 R2 + iωL2 − i/ωC2 − i/ωC


, (12)

G2 =



R1 + iωL1 − i/ωC1 − i/ωC V1

i/ωC V2


, (13)

G =


R1 + iωL1 − i/ωC1 − i/ωC i/ωC
i/ωC R2 + iωL2 − i/ωC2 − i/ωC


. (14)

Here, Rl is the total lumped resistance, equivalent to the sum of ohmic and radiative losses. Cl and
Ll are the lumped capacitance and inductance, respectively. C is the interaction capacitance between
the two metamaterials.

The total active power and the individual powers were then calculated for three different S values
of Co, while keeping S fixed for Ag. The parameter values utilized in calculating the active power
were H0 = 1 A/m, R1 = 0.1 Ω, R2 = 50 Ω, C1 = C2 = 10 fF , C = 0.1 pF, L1 = L2 = 16 nH. S value
for Ag was fixed at 4 × π mm−1 while S1 = 2 × π mm−1, S2 = 4 × π mm−1, and S3 = 6 × π mm−1 were
used for Co. Fig. 7 compares the active powers of poor (Co) and good (Ag) conductors and the total
power of the system. The behavior depicted by Fig. 7(a) is that, as the surface to volume ratio is
increased in going from S1 to S3, the Co power crosses to the positive side in the 13–15 GHz range
[Fig. 7(a)]. On the other hand, as the surface to volume ratio increases, the Ag power in the interacting
system crosses from positive to negative [Fig. 7(b)], a trend observed opposite to that for Co in the
13–15 GHz range. For small S value, i.e., S1, the Ag power remains positive over the frequency regime
studied. This can also be observed in Fig. 7(c), in which the total active power for S1 remains non-zero,
while for the other S values, i.e., S2 and S3, the power goes to zero in the 13–15 GHz frequencies
when P1 = 0. In order for the total power to be zero at the frequency at which P1 = 0, P2 should also
be zero. This suggests that the active power of Ag goes to P2 ≈ 0, which is only possible due to the
coupling happening between Ag and Co. As the volume of Co is increased, then its surface to volume

(a) (b) (c)

FIG. 7. Comparison of the active power in two interacting nonbianisotropic systems. (a) Active power for poor conductor
(equivalent to Co), (b) good conductor (equivalent to Ag), and (c) the total power of the poor-good conductor system for
three different surface to volume ratio’s for poor conductor. The parameters used to calculate the active power are similar
to the ones used in Ref. 42. The three different S values used to calculate the active power are S1= 2×π, S2= 4×π and
S3= 6×π mm−1.
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FIG. 8. Quantum Efficiency of Ag and bimetal CoAg. (a) Energy dependence of η. (b) Variation of η with total volume of
nanoparticle.

ratio decreases, which results in weaker coupling as depicted in Fig. 7(c), resulting in the total active
power remaining positive. This model for resonators in close vicinity suggests that when the radiation
emitted from Co is suppressed (P1 = 0), then it suppresses the radiation emitted by the neighbour
Ag. This result can be further extended to explain the crossover in the quality factor trends shown
in Fig. 3. As the Co amount is increased, the surface to volume ratio decreases resulting in a weaker
coupling between Co and Ag. This leads to weakening of the suppression of radiative losses. Thus,
the modification of the radiative losses effects the quantum efficiency of the bimetallic NP system, as
shown in Subsection III C.

C. Quantum efficiency of plasmonic scattering from Ag and CoAg

Since the individual contributions from radiative and non-radiative decays were estimated for
the pure Ag and bimetallic CoAg systems, we were able to calculate the quantum efficiency for
radiative energy transfer from the plasmonic system to its surrounding as η =

Γ1R
Γ1R+Γ1NR

. The qua-
ntum efficiency comparison of Ag to bimetal CoAg are shown in Fig. 8. In Fig. 8(a) the variation with
resonance energy showed that η for the bimetal was comparable to Ag and could also be larger than
that of Ag for energies &2.5 eV. The volume dependent behaviors shown in Fig. 8(b) suggest that the
bimetal systems can emulate the scattering efficiency of pure Ag nanoparticles. Several plasmonic
applications require either optimizing the quality factor or the quantum efficiency independently, such
as for LSPR sensing versus solar energy harvesting. Our results suggest that the Q and η can be
independently controlled by varying the size and composition of the nanoparticles. Furthermore, by
synthesizing bimetallic nanoparticles, the quantum efficiency (or Q factor) can be enhanced over that
of pure Ag at different energy positions thus broadening the energy regime for excellent plasmonic
response.

IV. CONCLUSION

In this work, we have investigated the size and energy dependence of the plasmonic quality factor
in hemispherical Ag and CoAg bimetallic NPs. Optical spectroscopy studies showed that the band-
width of the plasmon resonance from CoAg could be comparable to and even better that of pure Ag.
To understand the origin of this behavior, the contribution from radiative and non-radiative effects was
independently established by comparing the plasmonic behaviors of Ag hemispherical nanoparticles
to Ag triangular particles. A phenomenological model comparing CoAg bimetals to Ag within the
quasi-static and effective medium models reveled that the CoAg bimetal system can significantly
influence the radiative energy transfer from the Ag component of the bimetal. As a consequence, the
bimetallic systems could have comparable or better quality factor and or quantum efficiency to that of
pure Ag in certain regimes of resonance energy and particle volume. These results demonstrate that
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the bimetal nanostructures could be used to engineer the plasmonic bandwidths and thus be a viable
approach to tune the quality factor and quantum efficiency of localized surface plasmon processes.

V. EXPERIMENTAL SECTION

The nanoparticles were synthesized using two different synthesis techniques. The hemispherical
shaped nanoparticles were synthesized by pulsed laser dewetting. The quartz substrates were cleaned
by sonicating in acetone, methanol, and deionized water for 30 min each. The substrates were then
dried and were used for subsequent studies later on. Metal films of Ag and Co were deposited using
electron beam evaporator in a UHV chamber with a base pressure of 2 × 10−8 Torr. Ag films of thick-
ness 1-10 nm were deposited for the dewetting studies and for the bimetal nanoparticles synthesis
Ag film was fixed at 5 nm and the Co film thickness was varied between 1-5 nm. The bilayer films
were deposited in a sequential order with Co on top of Ag film. The deposited metal films were than
rastered using a 9 ns pulsed Nd:YAG laser operating at 50 Hz, at 266 nm. Areas of approximately
1-5 mm2 area were rastered (at ∼2 mm/min) at energy density of 80-90 and 100-110 mJ/cm2 for Ag
and CoAg films, respectively. The diameter of the gaussian profile laser spot was 1 mm. The triangular
shaped nanostructures were synthesized using nanosphere lithography technique (NSL). The mask
formation was done either by spincoating or by formation of polystyrene (PS) mask at the air-water
interface. The details for the PS mask formation by spincoating can be found in the following Ref. 38.
PS beads of diameter 500 nm were used to form mask using this technique. The other technique for
PS mask formation at the air-water interface was done according to the Refs. 43–45. Sodium dodecyl
sulfate (SDS) was dissolved in water to make a solution of 0.3M concentration. After which equal
volumes of PS beads solution (sizes 100 or 200 nm) were mixed with ethanol. The SDS solution
was filled in a glass trough and the PS beads solution was poured onto a glass slide inclined at ∼45◦

angle and partially immersed in the trough. A syringe was used to pour the PS solution on the glass
slide. Using this technique, large patches of PS monolayer of size in cm range were formed at the
air-water interface. The PS monolayers were transferred onto the substrate by scooping the PS mono-
layer and then were left for drying at an inclination angle of 2◦-4◦ in a controlled environment. Using
this technique, continuous monolayer patches of cm square area can be achieved. After the PS mask
formation, Ag films in the range from 15-50 nm deposited through the PS mask and the mask was
etched out to give the final nanostructures of triangular shapes.

The scanning electron microscope (SEM) imaging of the nanostructures were done using Zeiss
Merlin being operated in 1-5 kV range using a SE detector. The optical measurements were obtained
in transmission mode using HR2000+ES spectrometer. The transmission spectrums were then con-
verted to absorption spectrums using Beer-Lambert’s law and were then normalized. The normalized
absorption spectrums were fitted with single Lorentzian curves to extract the BW for the plasmon
resonance.

SUPPLEMENTARY MATERIAL

See supplementary material for the details of the Lorentz fits, optical properties of the Ag nan-
otriangles, contributions of electron dephasing on the bandwidth, the role of particle spacing on the
bandwidth, and the error bar calculations.
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